Fine-Grained Complexity and Conditional Hardness for Sparse Graphs
نویسندگان
چکیده
We consider the fine-grained complexity of sparse graph problems that currently have Õ(mn) time algorithms, where m is the number of edges and n is the number of vertices in the input graph. This class includes several important path problems on both directed and undirected graphs, including APSP, MWC (minimum weight cycle), and Eccentricities, which is the problem of computing, for each vertex in the graph, the length of a longest shortest path starting at that vertex. We introduce the notion of a sparse reduction which preserves the sparsity of graphs, and we present near linear-time sparse reductions between various pairs of graph problems in the Õ(mn) class. Surprisingly, very few of the known nontrivial reductions between problems in the Õ(mn) class are sparse reductions. In the directed case, our results give a partial order on a large collection of problems in the Õ(mn) class (along with some equivalences), and many of our reductions are very nontrivial. In the undirected case we give two nontrivial sparse reductions: from MWC to APSP, and from unweighted ANSC (all nodes shortest cycles) to a natural variant of APSP. The latter reduction also gives an improved algorithm for ANSC (for dense graphs). We propose the MWC Conjecture, a new conditional hardness conjecture that the weight of a minimum weight cycle in a directed graph cannot be computed in time polynomially smaller than mn. Our sparse reductions for directed path problems in the Õ(mn) class establish that several problems in this class, including 2-SiSP (second simple shortest path), s-t Replacement Paths, Radius, and Eccentricities, are MWCC hard. We also identify Eccentricities as a key problem in the Õ(mn) class which is simultaneously MWCC-hard, SETH-hard and k-DSH-hard, where SETH is the Strong Exponential Time Hypothesis, and k-DSH is the hypothesis that a dominating set of size k cannot be computed in time polynomially smaller than n. Our framework using sparse reductions is very relevant to real-world graphs, which tend to be sparse and for which the Õ(mn) time algorithms are the ones typically used in practice, and not the Õ(n) time algorithms. ∗Dept. of Computer Science, University of Texas, Austin TX 78712. Email: [email protected], [email protected]. This work was supported in part by NSF Grant CCF-1320675. The first author’s research was also supported in part by a Calhoun Fellowship.
منابع مشابه
Fine-grained I/O Complexity via Reductions: New Lower Bounds, Faster Algorithms, and a Time Hierarchy
This paper initiates the study of I/O algorithms (minimizing cache misses) from the perspective of fine-grained complexity (conditional polynomial lower bounds). Specifically, we aim to answer why sparse graph problems are so hard, and why the Longest Common Subsequence problem gets a savings of a factor of the size of cache times the length of a cache line, but no more. We take the reductions ...
متن کاملOn some fine-grained questions in algorithms and complexity
In recent years, a new “fine-grained” theory of computational hardness has been developed, based on “fine-grained reductions” that focus on exact running times for problems. Mimicking NP-hardness, the approach is to (1) select a key problem X that for some function t, is conjectured to not be solvable by any O(t(n)1−ε) time algorithm for ε > 0, and (2) reduce X in a fine-grained way to many imp...
متن کاملSETH-Based Lower Bounds for Subset Sum and Bicriteria Path
Subset Sum and k-SAT are two of the most extensively studied problems in computer science, and conjectures about their hardness are among the cornerstones of fine-grained complexity. One of the most intriguing open problems in this area is to base the hardness of one of these problems on the other. Our main result is a tight reduction from k-SAT to Subset Sum on dense instances, proving that Be...
متن کاملFine-grained Algorithms and Complexity
A central goal of algorithmic research is to determine how fast computational problems can be solved in the worst case. Theorems from complexity theory state that there are problems that, on inputs of size n, can be solved in t(n) time but not in t(n)1− time for > 0. The main challenge is to determine where in this hierarchy various natural and important problems lie. Throughout the years, many...
متن کاملTight Hardness for Shortest Cycles and Paths in Sparse Graphs
Fine-grained reductions have established equivalences between many core problems with Õ(n3)-time algorithms on n-node weighted graphs, such as Shortest Cycle, All-Pairs Shortest Paths (APSP), Radius, Replacement Paths, Second Shortest Paths, and so on. These problems also have Õ(mn)-time algorithms on m-edge n-node weighted graphs, and such algorithms have wider applicability. Are these mn boun...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1611.07008 شماره
صفحات -
تاریخ انتشار 2016